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The aim of this paper is to give a review of the main models of thermoluminescence, from
the most simple postulated by Randal and Wilkins in 1945. After that, a computer simulation
emphasizes some problems relative to the use of the models to describe the behaviour of
the thermoluminescent glow curve. Some suggestions are also given for obtaining a
correct interpretation from the experimental data. C© 2004 Kluwer Academic Publishers

1. Luminescence phenomena
Luminescence is defined as the emission of light above
that expected for black body, from some solids com-
monly called phosphors. This emission is the release
of energy stored within the solid through some type
of prior excitation of the solid electronic system, i.e.,
by visible, infrared (IR) or ultra violet (UV) light and
ionizing radiation. The light emitted has a longer wave
length of the one of the incident radiation (Stoke’s law).
Furthermore, the wavelength of the emitted light is a
characteristic of the luminescent material. The ability
to store the radiation energy is important in lumines-
cence dosimetry and is generally associated with the
presence of activators (i.e., impurity atoms and struc-
tural defects) which act as trapping levels for the free
electrons generated by excitation.

Luminescence occurring during excitation is called
fluorescence. If a delay of more than 10 nanoseconds
exists between excitation and emission of light, lumi-
nescence is called phosphorescence.

The luminescence effects can be used in solid
state dosimetry for measurement of ionizing radiation
dose; the main luminescence dosimetric techniques
are:

(a) radio-thermoluminescence (RTL) or better ther-
moluminescence (TL) only: it consists in a transient
emission of light from an irradiated solid when heated;

(b) radio-lyoluminescence (RLL): it consists in a
transient emission of light from an irradiated solid upon
dissolving it in water or some other solvent;

(c) radio-photoluminescence (RPL): it consists in an
emission of light from an irradiated solid by excitation
with U.V. light.

Techniques (a) and (b) are linked by three facts:

– they all show transient effects, superimposed on an
intrinsic background,

– they offer a memory but not a permanent record of
irradiation dose,

– the basic memory mechanism for all techniques is
similar for a given inorganic material; only the readout
of the radiation induced signal is different for the two
different techniques.

Materials of interest in thermoluminescent dosimetry
(TLD) are principally insulators in which conduction
electrons are entirely due to absorbed radiation energy.
Examples of such insulators are the cubic structured
alkali halides, such LiF and NaCl. An extensive review
of the thermoluminescent materials, including prepara-
tion and characteristics of the more recent production
is given in [1].

Thermoluminescence is observed under condition of
steadily increasing temperature. In the usual thermolu-
minescence experiments, the TL system is irradiated at
room temperature (RT) and later heated through a tem-
perature range where the luminescence is bright, until
a temperature level at which all the charges have been
thermally excited out of their metastable levels and the
luminescence completely disappears.

If the light intensity is plotted as a function of temper-
ature (or time) the resulting graphs is called glow-curve
(Fig. 1). The glow-curves have one or more maxima
called glow-peaks and are function of various energy
level traps.

Efficient thermoluminescent phosphors have an high
concentration of electron and hole traps, provided by
structured defects and impurities.

2. Mathematical treatment
The aim of a mathematical analysis concerning the ther-
moluminescent emission of light is to achieve a satis-
factory knowledge of the phenomena related to it. From
a theoretical point of view, TL is directly connected to
the band structure of solids and particularly to the ef-
fects of impurities and lattice irregularities. These can
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Figure 1 Glow curve.

be described as centers that may occur when ions of
either signs move away from their original sites, thus
leaving vacancy states, able to interact with free charge
carriers and to trap them; alternatively, ions can dif-
fuse in interstitial positions and break locally the ideal
lattice geometry; finally, impurity ions can perturb the
lattice order, because of their sizes and valences, gener-
ally different from their neighbor ones. Moreover, these
extrinsic defects can interact with the intrinsic ones, and
eventually either of them can aggregate in more com-
plex configurations. From an atomic standpoint a de-
fect can be described by means of the sign and number
of charge carriers it may interact with, and the even-
tual existence of excited states; to such a description, a
characteristic energy for each center corresponds: this
may be defined as the amount of energy able, when sup-
plied, to set the trapped charges free, thus destroying
the center and restoring a situation of local order.

It is feasible therefore to describe the band structure
in term of valence and conduction bands, parted from
each other by a forbidden gap in which the defects are
represented as sites localized at different depths, be-
low the conduction band, where free charge carriers
of either sign may be trapped. Therefore, the mapping
of the forbidden gap reveals quite a complex config-
uration, and the experimental TL emission study can
provide a satisfactory tool to get detailed information
on its most meaningful parameters. These are, for each
site, the characteristic energy (E), a frequency factor
(s), connected to the transition frequency, and a kinetic
order (b) synthesizing the quality of the involved phe-
nomena. The kinetic order ranges between 1 and 2. The
former value corresponds to a situation where a charge
(electron) is supplied energy to raise in the conduction
band and, consequently, to fall to a center where it un-
dergoes recombination with hole; the latter one stands
for a situation where this phenomenon has the same
probability of retrapping. Intermediate cases are likely

to occur as well as contributions from non radiative
events (b = 0).

The mathematical models based upon these defini-
tions are consisting of convenient differential equations
systems, yielding for each case, the evolution of charged
carriers populations, the analytical forms of which are
to be checked by means of suitable experimental data. It
is therefore evident how the involved parameters are to
be conveniently adjusted until a fair agreement between
theory and practice is attained. The most promising tool
is the observation and the recording of TL emission,
under several experimental conditions, as a function of
temperature which the TL sample is heated to, or of
heating up time. For a constant heating rate, these two
observations are equivalent. The plot shape depends on
the physical and chemical properties of the material and
on the kind of the treatment it is submitted to. However
it is always a single- or multi-peaks structure, as may be
expected from the general equations, and a correspon-
dence can be pointed out between a peak and an electron
trap level. This is explained by considering how, at a
certain temperature, the amount of thermal energy sup-
plied reaches, for a given level, the threshold necessary
to raise the relative trapped charges in the conduction
band from where they can give rise to radiative recom-
bination events. For this purpose, other centers, able to
trap positive charge carriers, are involved, and they are
likely to be connected to the quality of the emitted light.

The analytical form for a single peak, which the over-
all curve is a superposition of, can fully described by
means of some geometrical parameters as the peak po-
sition, its left and right widths, the ratio between them,
the overall width, the height. This last one is depen-
dent on the heating rate and increases, for given experi-
mental conditions, with the increasing of it. These geo-
metrical parameters can be shown to correspond to the
main physical ones: the mathematical expressions can
be evaluated by a convenient analytical manipulation
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Figure 2 Randal Wilkins model.

of the involved equations. It is also to be remarked that
the experimental uncertainties, obtained by means of
the glow-curve plot, allow for an estimate of the phys-
ical errors related to them, and their evaluations can
point out a well defined method as the fittest one.

3. Randall-Wilkins model
In 1945, Randall and Wilkins [2] extensively used a
mathematical representation for each peak in a glow
curve, starting from studies on phosphorescence. Their
mathematical treatment was based on the energy band
model and yelds the well-known first order expression.

The following figure, Fig. 2, shows the simple model
used for the theoretical treatment. Between the delo-
calized bands, conduction band, CB, and valence band,
VB, two localized levels (metastable states) are consid-
ered, one acting as a trap, T , and the other acting as a
recombination center, R. The distance between the trap
T and the bottom of the CB is called activation energy
or trap depth: E . This energy is the energy required to
liberate a charge, i.e., an electron, which is trapped in T .
The probability p, per unit of time, that a trapped elec-
tron will escape from the trap, or the probability rate of
escape per second, is given by the Arrhenius equation,
having considered that the electrons in the trap have a
Maxwellian distribution of thermal energies

p = s · exp

(
− E

kT

)
(1)

where E is the trap depth (eV), k the Boltzmann’s con-
stant, T the absolute temperature (K ), s the frequency
factor (sec−1), depending on the frequency of the num-
ber of hits of an electron in the trap, seen as a potential
well.

The life time, τ , of the charge carrier in the metastable
state at temperature T , is given by

τ = p−1 (2)

If n is the number of trapped electrons in T , and if
the temperature is kept constant, then n decreases with
time t according to the following expression:

dn

dt
= −pn (3)

Integrating this equation

∫ n

n0

dn

n
= −

∫ t

t0

p · dt (4)

one obtains

n = n0exp

[
−sexp

(
− E

kT

)
· t

]
(5)

where n0 is the number of trapped electrons at the initial
time t0 = 0.

Assuming now the following assumptions:

– irradiation of the thermoluminescent material at a
low enough temperature so that no electrons are re-
leased from the trap,

– the life time of the electrons in the conduction band
is short,

– all the released charges from trap recombine in
luminescent center,

– the luminescence efficiency of the recombination
centers is temperature independent,

– the concentrations of traps and recombination cen-
ters are temperature independent,

– no electrons released from the trap is retrapped

According to the previous assumptions, the TL inten-
sity, I , at a costant temperature, is directly proportional
to the detrapping rate, dn/dt :

I = −c

(
dn

dt

)
= cpn (6)

where c is a constant which can be set to unity.
Equation 6 represents an exponential decay of
phosphorescence.

Using Equation 5 in Equation 6 one obtains:

I (t) = n0s exp

(
− E

kT

)
exp

[
−st exp

(
− E

kT

)]
(7)

Introducing a constant heating rate, β = dT/dt , from
Equation 4 we have:

∫ n

n0

dn

n
= −

(
s

β

) ∫ T

T0

exp

(
− E

kT ′

)
dT ′

ln(n) − ln(n0) = −
(

s

β

) ∫ T

T0

exp

(
− E

kT ′

)
dT ′

and again

n = n0 exp

[
− s

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]
(8)

Then, using Equation 6

I (T ) = n0s exp

(
− E

kT

)

× exp

[
− s

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]
(9)
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Figure 3 TM and glow curve.

This expression can be evaluated by mean of numer-
ical integration, and it yields a bell-shaped curve, as
in Fig. 3, with a maximum intensity at a characteristic
temperature TM.

Some observation can be done on Equation 9:

– I (T ) depends on three parameters E, s and b,
– E has values around 20kT in the range of occurance

of TL peaks,
– exp(− E

kT ) is of the order of 10−7,
– when T is slightly greater than of T0, the argument

of the second exponential function is about equal to
unity and decreases with increasing temperature. I (T )
is then dominated by the first exponential and increases
very fast as the temperature increases. At a certain tem-
perature, TM, the behaviour of the two exponential func-
tions cancel: at this temperature the maximum temper-
ature occurs,

– above TM, the decrease of the second exponential
is much more rapid than the increase of the first ex-
ponential and I (T ) decreases until the traps are totally
emptied.

An important relationship, the so called condition at
the maximum, is obtained by Equation 9 by setting its
first derivative equal to zero at T = TM, i.e.,

dI

dT
= 0 at T = TM

For practical purposes, the logarithm derivative is con-
sidered:

d(ln I )

dT
= 1

T

dI

dT

Then from Equation 9 we get

[
d(ln I )

dT

]
T =Tm

= E

kT 2
M

− s

β
exp

(
− E

kTM

)
= 0

and the following expression is obtained

βE

kT 2
M

= s exp

(
− E

kTM

)
(10)

From Equation 10, the frequency factor is easily de-
termined as

s = β · E

k · T 2
M

exp

(
E

kTM

)
[sec−1] (11)

From Equation 10 we can obtain some interesting
remarks:

– for a constant heating rate TM shifts toward higher
temperatures as E increases or s decreases;

– for a given trap (E and s are constant values) TM
shifts to higher temperatures as heating rate increases;

– TM is independent of n0.

4. Garlick-Gibson model
In 1948 Garlick and Gibson [3], in their studies on phos-
phorescence, considered the case when a free charge
carrier has probability of either being trapped or recom-
bining within a recombination center. The term second
order kinetics is used to describe a situation in which
retrapping is present.

They assumed that the escaping electron from the
trap has equal probability of either being retrapped
or of recombining with hole in a recombiantion
centre.

Let us indicate: N = concentration of traps, n =
electrons in N , m = concentration of recombination
centres, n = m for charge neutrality condition.

The probability that an electron escapes from the trap
and recombine in a recombination centre is

m

(N − n) + m
= n

N
(12)

So, the intensity of phosphorescence, I , is given by
the rate of decrease of the occupied trap density, result-
ing in the recombination of the released electrons with
holes in the recombination centres:

I (t) = −dn

dt
= c

(
n

N

)
·
(

n

τ

)

= c
n2

N
s exp

(
− E

kT

)
(13)

where τ is the mean trap lifetime.
Equation 13 can be rewritten as

dn

dt
= −n2s ′ exp

(
− E

kT

)
(14)

The quantity s ′ = s/N is called pre-exponential fac-
tor and it is a constant having dimensions of cm3 sec−1.
Equation 14 is different from that one obtained in
the case of first order kinetics, where the recombina-
tion probability was equal to 1, since no retrapping is
possible.

The integration of Equation 14, considering the tem-
perature as a constant, gives the occupacy function n(t)
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as

n = n0

[
1 + s ′n0t exp

(
− E

kT

)]−1

(15)

and then, the TL intensity I (t) is:

I (t) = −dn

dt
= n2s ′ exp

(
− E

kT

)

= n2
0s ′exp

(− E
kT

)
[
1 + s ′tn0exp

(− E
kT

)]2 (16)

which describes the hyperbolic decay of phospho-
rescence.

The luminescence intensity of an irradiated phosphor
under rising temperature, i.e., thermoluminescence, is
obtained from Equation 14 introducing a linear heating
rate β = dT/dt :

dn

n2
= −s ′

β
exp

(
− E

kT

)
dT

Therefore, by integration, the function n(T ) is ob-
tained as:

n = n0

[
1 +

(
s ′n0

β

) ∫ T

T0

exp

(
− E

kT ′

)
dT ′

]−1

(17)

and the intensity I (T ) is then given by

I (T ) = −dn

dt
= n2s ′ exp

(
− E

kT

)

= n2
0s ′exp

(− E
kT

)
[
1 + s ′n0

β

∫ T
T0

exp
(− E

kT ′
)
dT ′]2 (18)

Equation 18 can be rewritten as

I (T ) = n0sexp
(− E

kT

)
[
1 + s

β

∫ T
T0

exp
(− E

kT ′
)
dT ′]2 (19)

where s = s ′n0. In this case s has units of s−1 like
the frequency factor in the first-order kinetics, but it
depends on n0.

The condition at the maximum is obtained by differ-
entiating Equation 18, setting

dI

dT
= 0 at T = TM

As usual, the logarithm derivative is considered:

[
d

(
ln I

dT

)]
T =TM

= E

kT 2
M

− 2
s ′n0

β
exp

(− E
kTM

)
1 + s ′n0

β

∫ TM

T0
exp

(− E
kT ′

)
dT ′

= 0

Then

E

kT 2
M

= 2
s ′n0

β
exp

(− E
kTM

)
1 + s ′n0

β

∫ TM

T0
exp

(− E
kT ′

)
dT ′

and rearranging

βE

2kT 2
M

[
1 + s ′n0

β

∫ TM

T0

exp

(
− E

kT ′

)
dT ′

]

= s ′n0 exp

(
− E

kTM

)
(20)

From this expression, the pre-exponential factor can be
determined:

s ′ = 1

n0

[
2kT 2

M exp
(− E

kTM

)
β · E

−
∫ TM

T0
exp

(− E
kT ′

)
dT ′

β

]−1

(21)

5. Effects of the kinetics order
on the glow-curve shape

The practical effect of the order of kinetics on the glow-
peak shape is illustrated in Fig. 4, in which two glow-
curves from a single type of trap are compared.

In the case of second order kinetics TM increases
by the order of 1% respect to the temperature at the
maximum of a first order peak. The main difference
is that the light is produced at temperatures above TM
because the trapping delays the release of the electrons.
Furthermore, for a fixed value of E , TM increases as β

increases or s ′ decreases; for a fixed value of β, TM
results to be directly proportional to E .

6. Adirovitch model
Adirovitch in 1956 [4] used a set of three differential
equations to explain the decay of phosphorescence in
the general case. The same model has been used by
Haering-Adams (1960) [5] and Halperin-Braner (1960)
[6] to describe the flow charge between localized en-
ergy levels and delocalized bands during trap emptying
The energy level diagram is shown in the following
Fig. 5.

Figure 4 Effects on the glow-curve shape.
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Figure 5 Adirovitch model.

With the assumption that retrapping of electrons oc-
curs into trapping states of the same kind as those from
which they had been released, the intensity of emission,
I , is given by

I = −dm

dt
= Ammnc (22)

where m is the concentration of recombination centers
(holes in centers), (cm−3); nc is the concentration of
free electrons in the conduction band, (cm−3); Am is
the recombination probability (cm3 sec−1).

This equation states that the recombination rate is
proportional to the number of free electrons, nc, and
the number of active recombination centers, m.

A second equation deals with the population varia-
tion of electrons in traps, n (cm−3), and it takes into
account of the excitation of electrons into the conduc-
tion band as well as the possible retrapping. Then we
have:

dn

dt
= −sn exp

(
− E

kT

)
+ nc(N − n)An (23)

where An(cm3 s−1) is the retrapping probability and N
(cm−3) is the total concentration of traps. Am and An
are assumed to be independent of temperature.

The third equation, relates to the charge neutrality,
can be expressed as

dnc

dt
= dm

dt
− dn

dt
(24)

or better, using Equations 22 and 23, as

dnc

dt
= sn exp

(
− E

kT

)
−ncm Am−nc(N −n)An (25)

Equation 25 states that the rate of change of nc
is given by the rate of release of electrons from N ,
minus the rate of recombination in m and retrapping
in N .

Two basic assumptions have been made for solving
the previous set of equations:

nc � n (26)

and ∣∣∣∣dnc

dt

∣∣∣∣ �
∣∣∣∣dn

dt

∣∣∣∣ (27)

The condition (27) means that the concentration of
carriers in the conduction band does not change; that is
to say

dnc = 0 (28)

In this case Equation 25 transforms in

nc = sn exp
(− E

kT

)
m Am + (N − n)An

(29)

The TL intensity is given by

I = −dm

dt
= sn exp

(− E
kT

)
m Am + (N − n)An

· m Am (30)

Introducing the retrapping-recombination cross-
section ratio

σ = An

Am
(31)

Equation 30 becomes

I = −dm

dt
= ns exp

(
− E

kT

)[
1 − σ (N − n)

σ (N − n) + m

]
(32)

Equation 32 gives the general one-trap equation
(GOT) for the TL intensity. The term preceding the
square brackets is the number of electrons thermally
released to the conduction band per unit time. The term
in square brackets is the fraction of conduction band
electrons undergoing recombination. From this equa-
tion it is possible to obtain the first and second order
kinetics equations.

Indeed, the first order kinetics is the case when re-
combination dominates and this means that

m Am � (N − n)An (33)

or

σ = 0 (34)

The equation of intensity becomes then

I = −dm

dt
= ns exp

(
− E

kT

)
(35)

The assumption (28) gives

dm

dt
= dn

dt
or m = n + const

2282



and so Equation 35 becomes

I = −dn

dt
= ns exp

(
− E

kT

)
(36)

that is the same equation of the first order kinetics.
The second order expression can be derived from

Equation 32 using two assumptions which both include
the restrictive assertion m = n.

Remembering the Garlick and Gibson’s retrapping
assumption, the first condition can be written as

m Am � (N − n)An

and then the intensity is given by

I = −dm

dt
= m Amns exp

(− E
kT

)
(N − n)An

(37)

Secondly, assuming that the trap is far from satura-
tion, which means N � n, we obtain

I = −dm

dt
= m Amns exp

(− E
kT

)
NAn

(38)

Using the condition m = n the last equation becomes

I = −dn

dt
= n2s Am exp

(− E
kT

)
NAn

(39)

which, with s ′ = s Am/NAn, is the Garlick and Gibson
equation.

Assuming now equal recombination and retrapping
probabilities Am = An, as suggested by Wrezesinska
[7], one obtains the same equation of Garlick and
Gibson with s ′ = s/N :

I = −dn

dt
= n2s ′ exp

(
− E

kT

)
(40)

7. May-Partridge model
When the conditions of first or second order kinetics
are not satisfied, one obtains the so called general or-
der kinetics which deals with intermediate cases. May
and Partridge (1964) [8] wrote an empirical expression
for taking into account experimental situations which
indicated intermediate kinetics processes. They started
with the assumption that the energy level of traps is
single, as already assumed for the first and second
orders.

Let’s assume that the number n of charge carriers
present in a single energy level is proportional to nb.
Then, the probability rate of escape is:

dn

dt
= −s ′nb exp

(
− E

kT

)
(41)

where s ′ is the pre-exponential factor.
Equation 41 is the so called general order kinetics re-

lation, and usually b is ranging in the interval between 1

and 2. The pre-exponential factor s ′ is now expressed in
cm3(b−1)sec−1. It has to be stressed that the dimensions
of s ′ change with the order b. Furthermore, s ′ reduces to
the pre-exponential factor of Garlick and Gibson equa-
tion when b = 2.

Rearranging Equation 41 we have:

dn

nb
= −s ′ exp

(
− E

kT

)
dt (42)

which gives, by integration

n = n0

[
1 + s ′nb−1

0 (b − 1)t exp

(
− E

kT

)] 1
1−b

(43)

Equation 43 can be rewritten as

n = n0

[
1 + s ′′(b − 1)t exp

(
− E

kT

)] 1
1−b

with

s ′′ = s ′nb−1
0

With this definition the difficulty with respect to the
variation of dimensions has been bypassed. Any way,
the frequency factor s ′′ is constant for a given dose and
would vary when the dose is varied.

The intensity I (t) is now given by:

I (t) = −dn

dt
= s ′nb exp

(
− E

kT

)
= s ′′n0 exp

(
− E

kT

)

×
[

1 + s ′′(b − 1)t exp

(
− E

kT

)] b
1−b

(44)

Assuming a linear heating rate dT = βdt , we obtain
from Equation 42:

n = n0

[
1 + s ′′(b − 1)

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

] 1
1−b

(45)

The intensity I (T ) is given by

I (T ) = s ′′n0 exp

(
− E

kT

)

×
[

1 + s ′′(b − 1)

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]− b
b−1

(46)

It must be observed that two factors contribute to
I (T ):

– the exponential factor which constantly increases
with T ;

– the factor included in brackets, decreasing as T
increases.
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So we have again the explanation of the bell shape
of the glow-curve as experimentally observed.

To conclude, Equation 46 includes the second order
case (b = 2). Equation 46, which is not valid for the
case b = 1, reduces to the first order equation when
b → 1.

It must be stressed that Equation 41 is entirely em-
pirical, in the sense that no approximation can be found
which is able to derive Equation 41 from the set of dif-
ferential equations governing the traffic of charge carri-
ers and so, as a consequence, a physical model leading
to general order kinetics does not exist.

The condition of the maximum emission for b-
order kinetics can be looked from the general order
Equation 46, making the derivative of its logarithm:

kT 2
Mbs ′′

βE
exp

(
− E

kTM

)

= 1 + s ′′(b − 1)

β

∫ TM

T0

exp

(
− E

kT ′

)
dT ′ (47)

The pre-exponential factor is then:

s ′′ =
[

kT 2
Mb exp

(− E
kTM

)
βE

− (b − 1)
∫ TM

T0
exp

(− E
kT ′

)
dT ′

β

]−1

(48)

An interesting feature results from the equations giv-
ing the maximum conditions for the first-, second- and
general-orders respectively:

βE

kT 2
M

= s exp

(
− E

kTM

)
(10)

βE

2kT 2
M

[
1 + s ′n0

β

∫ TM

T0

exp

(
− E

kT ′

)
dT ′

]

= s ′n0 exp

(
− E

kTM

)
(20)

kT 2
Mbs ′′

βE
exp

(
− E

kTM

)

= 1 + s ′′(b − 1)

β

∫ TM

T0

exp

(
− E

kT ′

)
dT ′ (47)

– Equation 10 does not include the initial concentra-
tion n0, therefore the first order peak is not expected to
shift as a function of the irradiation doses;

– on the contrary, owing to the dependence of the
pre-exponential factors on n0 for b �= 1, and through
it, on the excitation dose, one should expect TM—from
Equations 20 and 47—to be dose dependent.

The dependence of the TM on the dose is an excit-
ing property. A large effort has been dedicated the
last 50 years for its experimental verification, without,
however, undoubted success. Moreover, this property
should have significant implication on the two main

applications of TL: dosimetry and dating. For these rea-
son this case of kinetics will be discussed in detail in a
following section.

8. Zero order kinetics
Partridge and May [9] have reported some observations
concerning an apparent kinetic order less than the first
one (b < 1). They explained their experimental results
by means of two competing processes: a first radiative
order and a zero order without radiative transitions.

For such a model one can write:

− dn

dt
= c1n + c2 (49)

where c1and c2 are the first and the zero order rate
constants respectively.

The integration of Equation 49 gets:

− 1

c1
ln(c1n + c2) = t + k ′ (50)

where k ′ is a constant of integration.
The TL intensity is given by

I = c1n (51)

Combining Equations 50 and 51 one obtains

− ln(I + c2) = c1t + k ′′ (52)

Partridge and May have reported that in isothermal
decay experiments some data fitted Equation 52 better
than an equation expressing order higher than the first
one.

9. Braunlich–Scharman model
A more satisfactory physical interpretation of the TL
kinetics can be based on a more complex description
of the TL centers in the forbidden gap. Braunlich and
Scharmann (1966) [10], wrote a set of differential equa-
tions describing the traffic of the charge carriers, during
the thermal excitation, making reference to the energy
level scheme proposed by Schon. This scheme con-
tains one electron trap, one hole trap and retrapping
transitions of the freed carriers back into their respec-
tive traps. The following Fig. 6 shows the band model
used to describe the traffic of the carriers.

Explanation of the symbols:

– nc = concentration of electrons in CB,
– nv = concentration of holes in VB,
– n = concentration of trapped electrons,
– N = concentration of electron traps,
– m = concentration of trapped holes,
– M = concentration of recombination centers (hole

traps),
– An = retrapping probability for electrons in N ,
– Amm = recombination probability for electrons

in M ,
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Figure 6 Braunlich model.

– Ap = retrapping probability for holes in M ,
– Anp = recombination probability for holes in N ,
– pn = sn exp(−(En/kT ))

is the thermal excitation probability for electrons from
N to CB,

– pp = sp exp(−(Ep/kT ))

is the thermal excitation probability for holes from M
to VB,

– En = electron trap activation energy,
– Ep = hole trap activation energy.

The set of the differential equations is:

dnc

dt
= npn − nc An(N − n) − ncm Amn (53a)

dnv

dt
= mpp − nv Ap(M − n) − nvn Anp (53b)

dn

dt
= −npn + nc An(N − n) − nvn Anp (53c)

dm

dt
= −mpp + nv Ap(M − m) − ncm Amn (53d)

Considering that, in the most general case, both re-
combination transitions are radiative, the total TL in-
tensity is given by

I = −dnc

dt
− dn

dt
= ncm Amn + nvn Anp (54)

The previous equation considers that the transitions
of conduction electrons into traps and of holes from the
valence band into recombination centers (hole traps)
are non radiative.

Two parameters have now to be defined:

Rn = An

Amn
(55a)

Rm = Ap

Anp
(55b)

which express the ratio of the retrapping probabili-
ties compared to recombination for both electrons and
holes.

The neutrality condition is given by

nc + n = nv + m (56)

and furthermore, with the assumptions that

nc ≺≺ n, nv ≺≺ m (57)

the following relation is also valid:

n ≈ m (58)

Four cases are analyzed:

(a) Rn ≈ 0, Rm ≈ 0
(b) Rn 		 1, Rm 		 1
(c) Rn ≈ 0, Rm 		 1
(d) Rn 		 1, Rm ≈ 0

Case (a) concerns a situation where recombination
prevails over trapping, case (b) considers that retrapping
prevails over recombination and the two others cases are
intermediate.

The quasi-equilibrium assumption is valid for both
electrons and holes:

dnc

dt
= dnv

dt
≈ 0 (59)

Case (a). The retrapping rate for both electrons and
holes is very small. Then the retrapping terms can be
neglected. Furthermore, taking into account the quasi-
equilibrium condition the previous Equations (53a–d )
become

dnc

dt
= npn − ncm Amn (60a)

dnv

dt
= mpp − nvn Anp (60b)

dn

dt
= −npn − nvn Anp (60c)

dm

dt
= −mpp − ncm Amn (60d)

Because n ≈ m, from Equations 60a and 60b we obtain,
taking into account relation (59)

nc ≈ pn

Amn
(61)

nv ≈ pp

Anp
(62)

Equation 60c then reduces to

dn

dt
= −n(pn + pp) (63)

Considering a constant rate β = dT/dt , Equation 63
becomes

dn

n
= − pn + pp

β
dT (64)
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Integration of Equation 64 yields

n = n0 exp

{
− 1

β

∫ T

T0

[pn + pp] dT ′
}

(65)

Going back to Equation 54, it can be rewritten, using
Equations 61 and 62, as:

I = pnm + ppn (66)

and using the relation (58) n ≈ m

I = n(pn + pp) (67)

which can be rewritten, using Equation 65

I = n0[pn + pp] exp

{
− 1

β

∫ T

T0

[pn + pp] dT ′
}

(68)

which is similar to the Randall-Wilkins first order
equation. Neglecting the transitions to the valence
band, i.e., pp = 0, the Randall-Wilkins equation is
obtained.

Case (b). The retrapping of charge carriers prevails
over the recombination transitions. Equations (53a–d)
become now

dnc

dt
= npn − nc An(N − n) (69a)

dnv

dt
= mpp − nv Ap(M − n) (69b)

dn

dt
= −npn + nc An(N − n) − nvn Anp (69c)

dm

dt
= −mpp + nv Ap(M − m) − ncm Amn (69d)

Using now the quasi-equilibrium condition,
Equation 59, and the neutrality condition in the
form

dn

dt
≈ dm

dt
(70)

from Equations (53a and c) we get, using n ≈ m,

dn

dt
= −n(nc Amn + nv Anp) (71)

Equation 69a becomes

npn − nc An(N − n) ≈ 0 (72)

Because n � N (far from saturation), Equation 72
gives

nc ≈ npn

An N
(73)

Similarly, considering m � M , we obtain for nv

nv ≈ mpp

Ap M
(74)

Substituting expressions (73) and (74) in Equation 71,
and using again n ≈ m, we obtain

dn

dt
≈ −n2

(
pn Amn

An N
+ pp Anp

Ap M

)
(75)

Introducing a linear heating rate, we get by integration

n = 1{
1
n0

+ 1
β

∫ T
T0

[( Amn pn

An N

) + ( Anp pp

Ap M

)]
dT ′} (76)

and the TL intensity is given by

I = −dn

dt

= − 1{
1
n0

+ 1
β

∫ T
T0

[( Amn pn

An N

) + ( Anp pp

Ap M

)]
dT ′}2

×
(

pn Amn

An N
+ pp Anp

Ap M

)
(77)

This equation is similar to the second order equation
given by Garlick and Gibson. It becomes identical to
it by neglecting the probability for transitions into the
valence band, i.e., supposing that pp = 0

Case (c). The new equations are now:

dnc

dt
= npn − ncm Amn (78a)

dnv

dt
= mpp − nv Ap(M − m) (78b)

dn

dt
= −npn + nc An(N − n) − nvn Anp (78c)

dn

dt
= −mpp + nv Ap(M − m) − ncm Amn (78d)

From Equations 78a and 78b we get

nc ≈ pn

Amn
, nv = mpp

Ap(M − m)
(79)

From (79) and (78d) we obtain

dm

dt
= −mpn (80)

and then

m ≈ m0 exp

(
− 1

β

∫ T

T0

pndT ′
)

(81)

The thermoluminescence intensity is

I = ncm Amn + nvn Anp (82)
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which transforms in, using (79), n ≈ m and M � m

I = mpn + m2 pp Anp

Ap M
(83)

and then, the explicit form for I is the following

I = m0 pn exp

(
− 1

β

∫ T

T0

pndT ′
)

+ m2
0 pp Anp

Ap M
exp

(
− 2

β

∫ T

T0

pndT ′
)

(84)

which is again the Randall-Wilkins equation for
pp = 0.

Case (d). Equations (53a–d) reduce to

dnc

dt
= npn − nc An(N − n) (85a)

dnv

dt
= mpp − nvn Anp (85b)

dn

dt
= −npn + nc An(N − n) − nvn Anp (85c)

dm

dt
= −mpp + nv Ap(M − m) − ncm Amn (85d)

Assuming the quasi-equilibrium condition, N � n, nv
and nc very small, i.e., m ≈ n, we get from (85a)

nc ≈ npn

An N
(86)

and from (85b)

nv ≈ pp

Anp
(87)

Then

dn

dt
= −npn + nc An(N − n) − nvn Anp

= −dnc

dt
− ppn Anp

Anp
= −npp (88)

from which, by integration

n = n0 exp

(
− 1

β

∫ T

T0

ppdT ′
)

(89)

The TL emission is then given by

I = ncm Amn + nvn Anp (90)

which transforms, using approximations (86), (87) and
n ≈ m, in the following expression

I = n2 pn Amn

An N
+ npp (91)

Using Equation 89, we get the final expression for the
intensity:

I = n2
0 Amn pn

NAn
exp

(
− 2

β

∫ T

T0

ppdT ′
)

+ n0 pp exp

(
− 1

β

∫ T

T0

ppdT ′
)

(92)

This equation becomes again the Randall-Wilkins
equation of the first order, ignoring the thermal release
of trapped electrons, i.e., pn = 0.

10. Two-trap model (Sweet and Urquhart)
This model has been proposed by Sweet and Urquhart
[11] to explain a situation where two peaks are so
closely that they appear as only one peak.

Let us define the following symbols:

– E1, E2 = (	E) = depth of two very closed traps
(eV),

– N1, N2 = concentration of trapping centres (m−3),
– n1, n2 = concentration of trapped electrons (m−3),
– M = concentration of recombination centres

(m−3),
– m = concentration of trapped holes in recombina-

tion centres (m−3),
– nc, mv = concentration of free electrons in CB and

free holes in VB (m−3); both are assumed negligible,
– An1, An2 = trapping rate constants (m3 s−1),
– Am = recombination rate constant (m3 s−1),
– γ1, γ2(= si exp(− Ei

kT )) = probability for electrons
from trap to CB.

The following set of equations can be written:

dn1

dt
= −γ1n1 + nc An1(N1 − n1) (93)

dn2

dt
= −γ2n2 + nc An2(N2 − n2) (94)

dnc

dt
+ dn1

dt
+ dn2

dt
= −Amncm (95)

The condition of charge neutrality is now:

m = nc + n1 + n2 (96)

having considered mv = 0.
Assuminig a linear heating rate T = Ti +β · t , where

Ti is the initial temperature and β = dT dt .
In order to solve numerically the previous equations,

the following approximations are assumed:

nc ≺≺ n1,
dnc

dt
≺≺ dn1

dt
(97)

nc ≺≺ n2,
dnc

dt
≺≺ dn2

dt
(98)
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Inserting (97) and (98) in Equation (96) one gets

m = n1 + n2 (99)

Then, using Equations 95 and 96, we obtain

− dm

dt
= −dnc

dt
− dn1

dt
− dn2

dt
= Amncm (100)

Equation 99 can be rewritten as

dm

dt
≈ dn1

dt
+ dn2

dt
(101)

and then, inserting (101) into Equation 100, we obtain

dnc

dt
≈ 0 (102)

Inserting now (102) in Equation 95 we get

dn1

dt
+ dn2

dt
+ Amncm = 0 (103)

Equations 93 and 94 can be now written as

dn1

dt
+ dn2

dt
= −γ1n1 − γ2n2 + nc An1(N1 − n1)

+ nc An2(N2 − n2)

which can be rearranged, using (99) and (103), as

Amnc(n1 + n2) = γ1n1 + γ2n2 − nc An1(N1 − n1)

− nc An2(N2 − n2) (104)

from which

nc = γ1n1 + γ2n2

Am(n1 + n2) + An1(N1 − n1) + An2(N2 − n2)

(105)

Because the glow-curve intensity is given by the de-
crease of the trapped holes during recombination, the
TL intensity is

I (T ) = −c
dm

dt
(106)

Using Equations 99 and 100 and taking c = 1,
Equation 106 becomes

I (T ) = Amncm = Amnc(n1 + n2)

= Am(n1 + n2)(γ1n1 + γ2n2)

Am(n1 + n2) + An1(N1 − n1) + An2(N2 − n2)

(107)

It has to be stressed that Equation 107 becomes the
equation of the first-order model by setting equal to zero
the parameters with subscript 2 and considering that re-

combination dominates, i.e., Amn1 		 An1(N1 − n1).
Equation 107 gives also the second order model con-
sidering the retrapping assumption and assuming to be
far from the trap saturation, i.e., N1 		 n1.

Equation 107 has been solved numerically for fitting
experimental results obtained from the study of ZnS.
The parameters used for the best fit are

s1 = s2 = 3 × 1015s−1,
N1

n1
= 64,

N2

n2
= 100, E1 = 18 meV, E2 = 22.5 meV,

An1

Am
= An2

Am
= 90

11. Mixed first and second order kinetics
The common assumption leading to kinetics orders
larger than 1 is the m = n. This assumption seems
to be the less probable to occur in a real material which
contains, in principle, many kinds of defects and impu-
rities. So, it has been suggested that in the real case the
most appropriate assumptions should be the following
[12]:

m = n + nc + C (108)

where C represents the number of trapped electrons or
holes not taking part in the TL process (i.e., charges
located in deep traps or in low probability recombina-
tion centers). Relation (108) is equivalent to the charge
neutrality.

Assuming as usual nc negligible compared to m or n
and considering Am = An(σ = 1), the TL intensity is
now given by

I (t) = −dn

dt
=

(
s

C + N

)
n(n + C) exp

(
− E

kT

)
(109)

If retrapping is dominating An(N − n) � Amm.
Furthermore, if the trap is far from saturation, N � n,
we also have

I (t) = −dn

dt
=

(
s Am

NAn

)
n(n+C) exp

(
− E

kT

)
(110)

Both previous equations can be written as

I (t) = −dn

dt
= s ′n(n + C) exp

(
− E

kT

)
(111)

where s ′ is a constant (cm3 s−1).
Equation 111 can be considered as a combination of

the first and second order kinetics.
The solution of Equation 111, considering a linear

heating rate, is the following:

n = C{−1 + 1
α

exp
[

Cs ′
β

∫ T
T0

exp
(− E

kT ′
)
dT ′]} (112)
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where

α = n0

n0 + C

The TL intensity as a function of temperature is then

I (T ) =
s ′C2α exp

[
Cs ′
β

∫ T
T0

exp
(− E

kT ′
)
dT ′] exp

(− E
kT

)
{
exp

[
Cs ′
β

∫ T
T0

exp
(− E

kT ′
)
dT ′] − α

}2

(113)

This expression behaves like exp(−E/kT ) at low
temperatures, similarly to the first, second and general
orders. At higher temperatures the shape depends on
the value of α.

For α = 0(no � C) the shape of Equation 113 tends
to the one of the first order; for α = 1(no � C) it tends
to a second order.

The special case of the second—general
order kinetics
According to Equations 19 and 46 the peak maximum
temperature TM depends on the n0. In practical situ-
ations this means that TM depends on the dose. The
dependence of the TM on the dose is an exciting prop-
erty. It has become the main criterion for accepting or
not an experimental glow peak as a peak with b > 1,
although other criteria, like the glow peak shape (sym-
metry factor) and its isothermal decay properties, ex-
ists. This fact is the source of a great controversy in
the literature of the last 50 years, where one can find
an enormous amount of articles, which report experi-
mental glow peaks with b > 1 based on both symmetry
factor and isothermal decay data. However, one cannot
find one article, which reports glow peaks with b > 1,
due to the dependence of its TM on dose. Moreover,
if b > 1 is obtained from peak shape and isothermal
decay data, the conclusion is not totally accepted (or it
is rejected), if the dependence of the TM on dose is not
further established.

Another fact, which (at the best of our knowledge)
has never been discussed in literature, is the possible
implication of the dependence of TM on dose on the
main TL applications; namely dosimetry and dating.

Due to the importance of the above subjects, they
will be discussed in detail. Initially, a simulation will be
performed, which reproduces the most basic properties
of the glow-peaks with b > 1. Based on the simulation
results the implications to dosimetry and dating will
be examined. Finally, an interpretation will be given
of why the behavior of experimental glow peaks with
b > 1 is not in agreement to the prediction of the theory.

12. Simulation
Using Equation 46, synthetic glow-peaks were simu-
lated keeping the value of s constant and varying the
value of n0 from 10−4 up to 1 (this mean N = 1 and
the variation is of the n0/N ). The aim is to study a
dose variation over four order of magnitudes. The trap-
ping parameters used are E = 1 eV, s = 1013 s−1 and
b = 1.2, 1.4,1.6,1.8 and 2. In experimental situations

Figure 7 Glow-peaks for various n0 normalized to the same peak height
in order to show the effects of the n0 on the glow-peak shape and peak
maximum: (a) n0 = 1, (b) n0 = 0, 3, (c) n0 = 0, 03, (d) n0 = 3.10−3,
(e) n0 = 5.10−3, and (f) n0 = 10−4.

the reference position of a glow-peak is that induced
by the lowest possible dose i.e., the dose which cor-
responds to the lowest detectable limit (LDL) for this
glow-peak. This fact is crucial for the general order
kinetics, where a variation of the TM as a function of
dose is expected. In the present simulation assuming
n0 = 10−4 as the lowest possible dose, the selected
E and s values induce a glow-peak with peak maxi-
mum TM at about 200◦C, which is, usually, preferred
for practical dosimetry.

13. General properties
Fig. 7, shows a set of glow-peaks as a function of n0,
normalized to the same peak height in order to see
clearly the shift as well as possible changes of the
glow-peaks shape.

Fig. 8, shows the behaviour of TM versus the n0
(dose). This is a reproduction of the very known and
multiple discussed property of the general order kinet-
ics. It is seen that for a variation of the n0 by four or-
der of magnitudes, the TM shifts to lower temperature
by 135 K for b = 2. This is a dramatic shift, which

Figure 8 Behaviour of the peak maximum temperature as a function of
the initial concentration of the trapped electrons, n0 for variouskinetic
orders b. (a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and (e) 2.
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could have an influence in the applications of the TL
in dosimetry and dating (see discussion below). On the
other hand the variations in peak shape and TM would
give the impression that different set of E and s values
correspond to the glow-peak at each dose. However, the
above variations are due to the fact that in the general
order kinetic Equation 46, the frequency factor and the
initial concentration n0 act like an effective frequency
factor, which for N = 1 is s ′′ = s ′nb−1

0 . Note that
the readout heating rate, β, must be considered stable
and equal to 1, otherwise it contributes to the effective
frequency factor (seff). The set of E and s values used
for the derivation of the glow peaks in Fig. 7, can be
reproduced by performing a curve fitting procedure.
All the synthetic glow-peaks obtained were fitted using
two general order TL glow-peak algorithms. The one,
which doses not contain the frequency factor like that
of Kitis et al. [13]. The second with the original func-
tion given by Equation 46, where the pre-exponential
factor was considered as a single valued seff.

The curve fitting procedure was performed using the
MINUIT program [14]. The accuracy of the fit was
tested by using the Figure Of Merit (FOM)[15]. The
fitting with the algorithm by Kitis et al. [13] gives di-
rectly the values of E and TM, because they are the free
parameters of the fitting. This curve fitting procedure
reproduces exactly the value of the activation energy
(1 eV). The FOM values obtained were very low, of
the order of 10−5, which insures an almost perfect fit.
The values of seff obtained directly (as a free parameter)
from the fitting are equal (as it has to be) to the values
of s ′′ = s ′nb−1

0 .
From the curve fitting procedure, except the values

of TM, as a function of n0, the temperatures T2, T1,
which correspond to the half maximum intensity and
the Full Width at Half Maximum FWHM = T2 − T1,
were also evaluated. Using these data and applying the
peak shape method of Chen [16] the activation energy
was evaluated. The peak shape method gave values of
as a function of n0 equal to the original E = 1 eV.

Fig. 9, shows the behaviour of the FWHM as a func-
tion of n0. So, one can see that in case of general order

Figure 9 Behaviour of the FWHM as a function of the initial concen-
tration of the trapped electrons, n0 for various kinetic orders b: (a) 1.2,
(b) 1.4, (c) 1.6, (d) 1.8, and (e) 2.

Figure 10 The s′′ as obtained by Equation s′′ = s′nb−1
0 , as a function of

the initial concentration of the trapped electrons, n0 for various kinetic
orders b: (a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and (e) 2.}

kinetics the glow—peak becomes narrower as the n0
(i.e., the dose) increases.

Fig. 10, shows the values of the s ′′, as it is ob-
tained from the curve fitting described above and from
Equation s ′′ = s ′nb−1

0 , as a function of the n0 for vari-
ous kinetic orders. The numerical values are shown in
Table 1.

The exact evaluation of the frequency factor is a very
important task because it is used to evaluate the half—
life of the trapping state, which is a necessary property
for the practical applications.

In the case of general (and second) order kinetics
the pre-exponential factor is given by the Equation 48,
which can be rearranged, using the integral approxima-
tion [16], in the following expression

s ′ = βE exp
(

E
kTM

)
nb−1

0 kT 2
M

[
1 + 2kTM(b − 1)

E

]−1

(114)

Table I shows the results concerning the frequency
factor evaluation. Columns 2–6 gives the values of
s ′′ as obtained from the curve fitting procedure using
Equation 46. As it was stated above these values are
exactly the same with those obtained from Equation
s ′′ = s ′nb−1

0 . The last column gives the values of s ′′ as
obtained using Equation 114, which are almost equal
to the original value of s = 1013, differentiated slightly
due to the last term, in brackets, of Equation 114.

The half-life of a trap, for a general-order process, is
given by

t1/2
= n1−b

0

s ′(1 − b)

[
1 − 1

21−b

]
exp

(
E

kTS

)
(115)

The above equation can be rearranged inserting in it
the explicit expressions for s ′ given by Equation 114.
So, the half-life is given by

t1/2
= exp

(
E

kTS

)
(1 − b)

[
1 − 1

21−b

] [
kT 2

M

βE exp
(

E
kTM

)
]

×
[

1 + 2kTM(b − 1)

E

]
(116)
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T ABL E I Columns b = 1.2–2, s′′ were obtained from the curve fitting procedure using Equation 46. Last column s′′ as obtained using s′′ = s′nb−1
0

for all values of n0 and b, which are same with those obtained from Equation 114 for all n0 and b.

N0 b = 1.2 b = 1.4 b = 1.6 b = 1.8 b = 2 Eq. 114

1 × 10−4 1.58 × 1012 2.51 × 1011 3.98. × 1010 6.31 × 109 1.0 × 109 9.7670112

2 × 10−4 1.82 × 1012 3.31 × 1011 6.03 × 1010 1.00 × 1010 2.0 × 109 9.8033112

5 × 10−4 2.18 × 1012 4.78 × 1011 1.04 × 1011 2.20 × 1010 5.0 × 109 9.8741112

1.5 × 10−3 2.40 × 1012 7.42 × 1011 2.02 × 1011 5.50 × 1010 1.5 × 1010 9.7900112

3 × 10−3 2.72 × 1012 9.79 × 1011 3.06 × 1011 9.58 × 1010 3.0 × 1010 9.8360112

1 × 10−2 3.98 × 1012 1.58 × 1012 6.30 × 1011 2.51 × 1011 1.0 × 1011 9.8521112

3 × 10−2 4.96 × 1012 2.46 × 1012 1.22 × 1012 6.05 × 1011 3.0 × 1011 9.8853112

1 × 10−1 6.30 × 1012 3.98 × 1012 2.51 × 1012 1.58 × 1012 1.0 × 1012 9.8420112

3 × 10−1 7.86 × 1012 6.18 × 1012 4.86 × 1012 3.81 × 1012 3.0 × 1012 9.7971112

6 × 10−1 9.03 × 1012 8.15 × 1012 7.36 × 1012 6.64 × 1012 6.0 × 1012 9.8186112

1 1.00 × 1013 1.00 × 1013 1.00 × 1013 1.00 × 1013 1.0 × 1013 9.8243112

The new Equation 116 does not contains directly the
n0, but gives the half-life as a function of the peak max-
imum temperature TM.

Using the above Equations 115 and 116 the half-life
was evaluated during simulation at Room Temperature
(RT) and at the peak maximum temperature.

Fig. 11, shows the half life at the peak maximum
temperature as a function of the initial concentration of
the trapped electrons, n0. The half life was evaluated
by Equation 115.

Fig. 12, shows the half life at the peak maximum
temperature as a function of the initial concentration of
the trapped electrons, n0. The half life was evaluated
by Equation 116.

Comparing the results of Figs 11 and 12 it is seen that
there are great difference between the two estimations.
This means that one has to be careful in evaluating the
half life in case of general order kinetics. Obviously
the results of Fig. 11 are the wrong ones. The reason is
in the fact that for any glow-peak the half-life at peak
maximum temperature should be much lower the time
needed to record the glow-peak during the TL readout
with a linear heating rate. For example a glow-peak
with a FWHM equal to 35◦C needs less than 100 s to
be recorded using a heating rate of 1◦C/s. Therefore, a
half-life of 105 s (curve e) at the peak maximum position

Figure 11 Half-life at the peak maximum temperature as a function of
the initial concentration of the trapped electrons, n0 as it was obtained
from Equation 115 for various orders of kinetics b: (a) 1.2, (b) 1.4, (c)
1.6, (d) 1.8, and (e) 2.

Figure 12 Half-life at the peak maximum temperature as a function of
the initial concentration of the trapped electrons, n0 as it was obtained
from Equation 116 for various orders of kinetics b: (a) 1.2, (b) 1.4, (c)
1.6, (d) 1.8, and (e) 2.

means that the respective glow-peak can not be recorded
with the usual TL readout procedure. On the other hand
Equation 116 gives the correct values of the half life
at peak maximum position, because these values are
compatible with the TL readout procedure.

Fig. 13, shows the half live at the Room temperature
as a function of the initial concentration of the trapped
electrons, n0. for various kinetic orders. The half live
was evaluated, by Equation 115.

Fig. 14, shows the half live at the Room temperature
as a function of the initial concentration of the trapped
electrons, n0. for various kinetic orders. The half live
was evaluated, by Equation 116.

Comparing the results of Figs 13 and 14 it is seen
that there are large differences. According to what is
said for the two previous figures the correct values are
those of Fig. 14.

14. Discussion
The most important fact is the possible influence of the
properties of a general order peaks, presented above, to
the two main application of the TL. Namely, Dosimetry
and TL dating. To the best of our knowledge these cases
are never discussed in literature.
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Figure 13 Half-live at the room temperature as a function of the initial
concentration of the trapped electrons, n0 for various kinetic orders as it
was evaluated from Equation 115: (a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and
(e) 2.

Figure 14 Half- live at the room temperature as a function of the initial
concentration of the trapped electrons, n0 for various kinetic orders as it
was evaluated from Equation 116. (a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and
(e) 2.

14.1. Implication to dosimetry
In most cases the practical dosimetric glow-peaks of a
TL dosimeters are between 420–520 K (150–250◦C).
Let say that for the lowest value of n0 = 10−4 of the
present simulation corresponds to the dose of the Low-
est Detectable Limit (LDL). Let also take as an example
the second order kinetics, b = 2. For n0 = 10−4 the
glow-peak appears at 488 K (215◦C), with a half life at
room temperature more than two years. Let also assume
a glow-peak would accepted as a dosimetric glow-peak
if its half-life at room temperature is greater than one
month (2.6×106 s)(In fact this a very short practical half
life). For an increase of n0 from 10−4 to 5 × 10−4 (i.e.,
5 LDL) the half life drops below 1 month according
to Equation 115. This means that this glow-peak is not
any more capable for dosimetry. For the case of Equa-
tion 116 it happens after n0 = 3 × 10−3 (i.e., 30 LDL).

Obviously, this conclusion could be obtained without
the need of special evaluations by observing the shift
of the TM shown in Fig 8. A dose variation by a factor

of 10 shifts the TM to lower temperature by about 30–
40◦C. This means that if one measured 100 µGy using a
dosimetric peak at 150◦C, he cannot probably measure
a dose of 10 µGy using the same peak. The above, very
simple, examples makes clear that a second order glow-
peak is rather not useful for wide dosimetric purposes.

14.2. Implication to dating
The implications of a general order glow-peak, if any,
on the TL dating are very different. The TL dating
method is in fact the application of the dosimetric
method on the Natural Thermoluminescence (NTL)
glow-curve shown by a material of archaeological in-
terest. The NTL glow-curve consist only from the high
temperature glow-peaks from 250–450◦C, because the
lower temperature glow-peaks are eliminated during a
time interval equal to the radiation age of the archaeo-
logical material. The Equivalent beta dose, EDβ , i.e., a
beta dose, which induces TL equal to NTL, is usually
in the dose interval 10–50 Gy. If the NTL glow-curve
consist of general order glow-peaks then its tempera-
ture position for doses much lower that the EDβ will
be higher i.e., above 400 or 450◦C. However, this (al-
though without any practical interest and influence) is
rather an advantage, because at these higher tempera-
ture the half life will by larger. The influences must be
searched in the Additive dose procedure (ADP), which
leads to the EDβ evaluation. The ADP consist of giving
increasing doses on the already existing natural dose,
in order to obtain a calibration TL versus dose curve,
from which the EDβ is obtained. The dose region of the
additive beta doses are usually within an order of mag-
nitude. However, even this dose variation could cause a
temperature shift of the laboratory induced TL towards
the lower temperatures relative to the position of the
NTL. This temperature shift, however, can not cause
any problems to the TL dating procedure, because the
glow-peaks used for dosimetry are already at very high
temperatures and the time between the laboratory irra-
diation and readout is too short (usually minutes).

15. Treatment of the experimental data
The number of crucial details which have been so far
discussed, at the best of our knowledge, has never pre-
sented in literature although it is very important for
the experimental understanding of the general order
kinetics.

The basic property of general order kinetics, which
has to be verified experimentally, is the shift of the peak
maximum TM towards the lower temperature as the dose
increases as it is clearly shown in Fig. 8.

The procedure usually used is [17–19]:

1. Plot of the TM of a glow-peak as a function of the
delivered dose.

2. Evaluation of the kinetic parameters E and s of
the glow-peak.

3. Simulation like that of the present work to evaluate
the behaviour of TM as a function of dose (in arbitrary
units).

4. The net conclusion is arisen by comparing the ex-
perimental and simulated results.
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The procedure described by the above steps 1–4,
could lead to confusions if one does dot take into ac-
count that the theoretical predictions hold only when
the TL dose response is closely linear i.e., when:
dose = n0 = TL. However, in the most experimen-
tal cases the linear region is only a restricted part of the
whole TL dose response curve. In the non-linear parts
of the TL dose response curves the n0 is not a linear
function of dose. However, the TL is proportional to
n0. Therefore, in experimental cases, one can see the
expected behaviour of the TM, by plotting the TM ver-
sus the TL and not the TM versus the delivered dose.
However, it is not easy in most cases to put a non lin-
ear behaviour of TL on x-axis, so it is not possible to
plot TM versus TL in order to have a presentation of TM
versus n0. In order to solve this problem at the best, a
good presentation is to plot in close relation both TL
and TM versus dose and to compare their behaviour. The
expected behaviour which is in agreement with the ex-
pectations of the theory should be a specular behaviour
respect to the dose axis. It will be shown below in detail
what is the meaning of the term specular behaviour, by
considering some examples of TL dose response curves
for which a kinetic order of b = 2 is assigned. The cases
selected are:

1. Linear-superlinear-sublinear TL dose response
2. Strong sub-linear TL dose response

The results are shown in Figs 15 and 16. In both fig-
ures the upper ones show the TL dose response curves.
Curve (a) shows theline of linearity, whereas curve (b)
the non-linear TL dose response. The down figures
show, in one to one correspondence with the upper fig-
ures, the behaviour of TM as a function of dose. The
dependence of the behaviour of the TM on the form of
the TL dose response curve is obvious. The mirror be-
havior mentioned above means that the curves (a) and
(b) of the are the mirror likes relative to the dose axis
of the respective curves of the upper figures. Therefore,
if one compares the experimental behaviour of TM ver-
sus dose, in a non-linear TL dose response case, with a
simulated behaviour based on a linear increase of n0, as
it is done in the references [17–19] then an erroneous
conclusion could be emerge.

A suggestion in order to extract a conclusion about
the kinetic order of a glow-peak based on the behaviour
of its TM versus dose is:

1. Plot TL versus dose response curve
2. Plot TM versus dose
3. compare the plots as in the case of Figs 15 and

16. If the “mirror like” behaviour relative to the dose
axis is obtained, then a conclusion about first of higher
order kinetics can be extracted.

Alternatively on can use the following procedure.

1. Plot of TL versus dose curve.
2. Normalization of the TL versus dose over the TL

in the saturation region in order the higher value to be
equal to 1.

Figure 15 Case of a linear-superlinear-sublinear TL dose response. Up-
per: (a) A linear TL versus dose response curve, and (b) A non-linear
TL dose response curve. Down: The behaviour of TM as a function of
dose. Curves (a) and (b) are in one to one correspondence with the upper
curves.

3. The values of TL in fractions of the higher TL
value 1, obtained from the previously noticed normal-
ization, can be now used as the n0 values, with which
the simulation through a general or second order kinetic
equation must be done.

4. Plot experimental and simulated TM versus dose.
5. Compare the TL and TM versus dose as in the cases

of Figs 15 and 16.
6. If the simulation is performed with the correct E ,

s and b values then the simulated and experimental
TM versus dose behaviours coincide, otherwise only a
qualitative agreement will be obtained.

16. Model dependent behaviour
The whole problem of TM versus dose in general or-
der kinetics is not yet exhausted. There is another very
important parameter. This parameter has to do with the
model of the TL dose response curve. The non-linear
dose response models are of three main categories.
(I) Models which are based on a competition during
excitation (irradiation). (II) Models with competition
during recombination (readout heating) and (III) mixed
models i.e., model which suppose a primary non-linear
response during excitation and a final non-linear re-
sponse during recombination.
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Figure 16 Case of a sublinear TL dose response. Upper: (a) A linear
TL versus dose response curve, and (b) A non-linear TL dose response
curve. Down: The behaviour of TM as a function of dose. Curves (a) and
(b) are in one to one correspondence with the upper curves.

The theoretical simulation presented in the preceding
sections does not take in to account non-linearities. The
additional simulation presented in this subsection as-
sumes non-linearities, which (this must be noticed) are
compatible, only, with the models involving competi-
tion during excitation. It is very difficult to predict what
happens in cases the non-linearity is due to a competi-
tion during recombination. However, some arguments
could be given. During irradiation a number of the exist-
ing traps, N , are filled at a concentration of n0. During
the readout the trapped electrons are released. In these
models the recombination of the released electrons are
competed by a competitor deep trap. This means that
only a percentage of the trapped electrons n0 arrive at re-
combination centres and gives TL. Experimentally this
means that the emitted TL correspond to a restricted
number of the n0 caused by irradiation and then re-
leased during the readout. The question is what one
has to suppose for the behaviour of TM? Is in these
cases the behaviour of TM as a function of dose and

even as a function of TL, representative of its kinetic
order?

In the competition during heating model of superlin-
earity the final degree of superlinearity and therefore
the shape of TL dose response curve depend upon the
behaviour as a function of dose of the concentration
of trapped electrons n(D), the concentration holes in
the recombination centres, m(D) and the concentration
of the competing centres nc(D), during the excitation
(irradiation) stage. The behaviour of TM versus doses
could be predicted if one find the correct behaviour of
n(D) and m(D).

According to what was discussed in the previous sec-
tions, the lack of the experimental verification of the de-
pendence of the TM on dose could be attributed to the
method of analysis of experimental data, which was not
the appropriate. In the preceding section a method of
analysis is proposed, which is able to confirm this prop-
erty. If the proposed method of analysis fails, also, to
confirm the experimental verification of this property
then a revision of the analytical expressions for second
and general order kinetics is necessary.
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